Jumat, 04 Desember 2009

radio aktif

RADIO AKTIF

 

Radioaktif berhubungan dengan pemancaran partikel dari sebuah inti atom.unsur Radioaktif adalah unsur yang mempunyai nomor atom diatas 83.

 

Istilah radioaktif dan radioaktivitas dapat juga dihubungkan dengan:

Peluruhan radioaktif

Kontaminasi radioaktif

Limbah radioaktif

 

Konsep Radioaktivitas

 

Radioaktivitas dan Zat Radioaktif?

Radioaktivitas didefinisikan sebagai peluruhan inti atom yang berlangsung secara spontan, tidak terkontrol dan menghasilkan radiasi. Unsur yang memancarkan radiasi seperti ini dinamakan zat radioaktif.

 

 

 

Anda telah mengetahui bahwa inti atom terdiri atas dua partikel yaitu proton (ditemukan oleh Rutherford, 1919) dan netron (dipopulerkan oleh James Chadwick, 1932). Proton adalah partikel bermuatan positif (qp = 1,602 x 10-19 C, mp = 1,007276487 sma) disebut juga inti atom hidrogen, sedangkan netron merupakan partikel tidak bermuatan dengan massa 1,008664891 sma. Netron yang tidak terikat pada inti (netron bebas) bersifat tidak stabil dan waktu hidupnya tidak lama. Sekitar 12 menit sebuah netron bebas akan berubah menjadi proton dan satu partikel kecil yang dinamakan antineutrino.

 

Dengan demikian dapat juga dikatakan bahwa aktivitas radiasi atau radioaktivitas merupakan aktivitas proton dan netron. Gambar 1 mengilustrasikan keadaan inti karbon yang memiliki jumlah proton 6 dan netron 6 pada inti atomnya. Jumlah netron dan proton pada Gambar 1 sama banyaknya sehingga inti bersifat stabil. Sebaliknya jika jumlah proton lebih besar dari jumlah netron maka inti bersifat tidak stabil, ditunjukkan oleh Gambar 2. Inti atom yang tidak stabil inilah yang dapat melakukan aktivitas radiasi (melakukan peluruhan) hingga mencapai keadaan stabil.

 

Gaya Inti

 

Di atas telah dibahas bahwa inti atom terdiri atas proton dan netron. Secara elektrostatis proton-ptoton dalam inti atom akan saling tolak dengan gaya tolak menolak Coulomb (gaya elektrostatis) yang akan makin besar jika jarak dua buah proton makin dekat. Fakta menunjukkan bahwa proton-proton bersatu di dalam inti atom pada jarak yang sangat dekat ( sekitar 2x 10-15 m ), di mana secara elektrostatis proton-proton tidak mungkin bersatu.

 

Hal ini menimbulkan dua pertanyaan penting yaitu:

Bagaimana proton-proton dapat saling berikatan di dalam inti atom? Bagaimana pula netron terikat dalam kumpulan tersebut? Berapakah besarnya energi yang mengikat partikel-partikel tersebut?

 

Selain gaya elektrostatis antara partikel penyusun inti bekerja pula gaya Gravitasi, namun besarnya sangat kecil karena massa partikelnya juga sangat kecil. Sehingga dapat dipastikan bahwa gaya Gravitasi bukan faktor dominan dalam mengikat partikel-partikel inti. Untuk itu para ahli Fisika mengusulkan teori tentang Gaya Inti yaitu gaya tarik menarik antara partikel penyusun inti dengan sifat-sifat:

Gaya inti tidak disebabkan oleh muatan partikel atau bukan merupakan gaya listrik.

 

Gaya harus sangat kuat atau harus jauh lebih besar daripada gaya elektrostatis

 

Gaya inti merupakan gaya dekat artinya gaya ini hanya bekerja jika kedua partikel dalam inti cukup dekat (berada pada jarak tertentu sekitar 10-15 m). Jika gaya inti bekerja juga sampai jarak yang jauh, maka seluruh partikel di jagad raya akan berkumpul menjadi satu, sesuatu yang belum pernah terjadi.

 

Gaya inti tidak bekerja pada jarak yang sangat dekat sekali, karena pada keadaan ini akan berubah menjadi gaya tolak. Jika gaya inti bekerja juga pada jarak yang sangat dekat, maka semua netron akan menjadi satu.

 

Gaya inti antara dua partikel tidak tergantung pada jenis partikelnya. Artinya gaya inti terjadi pada proton-proton, proton-netron, dan netron-netron.

 

Ilustrasi yang paling mendekati untuk menggambarkan gaya inti adalah menggunakan dua buah bola yang dihubungkan permanen sebuah pegas, seambar 3. Berdasarkan pemikiran jangkauan gaya inti sekitar 10-15 m maka dapat diperkirakan energi diam partikel yang dipertukarkan adalah . Energi inilah yang dinamakan Energi ikat inti.

 

Bagaimana zat radioktif terjadi?

 

Di atas telah dijelaskan tentang gaya inti yang terjadi pada inti atom. Dengan demikian di dalam inti atom sekurang-kurangnya terdapat tiga gaya yang penting yaitu Gaya elektroststis, Gaya Gravitasi dan Gaya Inti. Karena nilai gaya gravitasi sangat kecil maka pengaruhnya relatif kecil sehingga dapat dikesampingkan.

 

Secara garis besar inti atom akan berada dalam dua keadaa dasar yaitu Keadaan Stabil dan Keadaan Tidak Stabil yang ditentukan oleh komposisi partikel penyusun inti. Keadaan stabil di capai apabila jumlah proton (Z) lebih sedikit atau sama banyak dengan jkumlah netron. Keadaan ini memungkinkan gaya inti lebih besar dibandingkan dengan gaya elektrostatis. Keadaan tidak stabil dicapai apabila jumlah proton (Z) lebih besar dari jumlah netron (N). Hal ini akan menyebabkan gaya elektrostatis jauh lebih besar di bandingkan dengan gaya inti. Mengapa gaya elektrostatis pada keadaan Z > N lebih besar? Karena gaya elektrostatis memiliki jangkauan yang lebih luas dibandingkan dengan gaya inti, sehingga dapat pada partikel proton yang berdekatan dan berseberangan sekalipun. Inti atom seperti inilah yang akan melakukan aktivitas radiasi secara spontan sampai tercapai keadaan stabil. Keadaan inti dengan jumlah proton (Z) lebih besar dari jumlah netron (N) akan menghasilkan zat radioaktif. Gambar 4 berikut menunjukkan karakteristik gaya inti dan gaya elektroststis di dalam inti atom.

 

Suatu zat (unsur) akan menjadi radioaktif jika memimilik inti atom yang tidak stabil. Suatu inti atom berada dalam keadaan tidak stabil jika jumlah proton jauh lebih besar dari jumlah netron. Pada keadaan inilah gaya elektrostatis jauh lebih besar dari gaya inti sehingga ikatan atom-atom menjadi lemah dan inti berada dalam keadaan tidak stabil.

 

Peluruhan radioaktif adalah kumpulan beragam proses di mana sebuah inti atom yang tidak stabil memancarkan partikel subatomik (partikel radiasi). Peluruhan terjadi pada sebuah nukleus induk dan menghasilkan sebuah nukleus anak. Ini adalah sebuah proses acak sehingga sulit untuk memprediksi peluruhan sebuah atom.

 

Satuan internasional (SI) untuk pengukuran peluruhan radioaktif adalah becquerel (Bq). Jika sebuah material radioaktif menghasilkan 1 buah kejadian peluruhan tiap 1 detik, maka dikatakan material tersebut mempunyai aktivitas 1 Bq. Karena biasanya sebuah sampel material radiaktif mengandung banyak atom,1 becquerel akan tampak sebagai tingkat aktivitas yang rendah; satuan yang biasa digunakan adalah dalam orde gigabecquerels

 

(Becquerel (simbol: Bq) adalah satuan turunan SI untuk keradioaktifan, dan didefiniskan sebagai keaktifan sejumlah bahan radioaktif atau hilangnya satu nukleus setiap detiknya. Oleh karena itu, Becquerel sama dengan s-1. Satuan lama untuk radioaktivitas adalah curie (Ci), yang didefinisikan sebagai 37×109 becquerel atau 37 GBq.

 

Nama Becquerel diambil dari nama Henri Becquerel, yang berbagi Penghargaan Nobel dengan Marie Curie untuk karya-karya mereka dalam menemukan radioaktivitas.)

 

 

Limbah radioaktif adalah jenis limbah yang mengandung atau terkontaminasi radionuklida pada konsentrasi atau aktivitas yang melebihi batas yang diijinkan (Clearance level) yang ditetapkan oleh Badan Pengawas Tenaga Nuklir. Definisi tersebut digunakan didalam peraturan perundang-undangan. Pengertian limbah radioaktif yang lain mendefinisikan sebagai zat radioaktif yang sudah tidak dapat digunakan lagi, dan/atau bahan serta peralatan yang terkena zat radioaktif atau menjadi radioaktif dan sudah tidak dapat difungsikan/dimanfaatkan. Bahan atau peralatan tersebut terkena atau menjadi radioaktif kemungkinan karena pengoperasian instalasi nuklir atau instalasi yang memanfaatkan radiasi pengion.

 

Jenis limbah radioaktif

Dari segi besarnya aktivitas dibagi dalam limbah aktivitas tinggi, aktivitas sedang dan aktivitas rendah.

Dari umurnya di bagi menjadi limbah umur paruh panjang, dan limbah umur paruh pendek.

Dari bentuk fisiknya dibagi menjadi limbah padat, cair dan gas.

 

Sumber-sumber limbah radioaktif

 

Limbah radioaktif umumnya berasal dari setiap pemanfaatan tenaga nuklir, baik pemanfaatan untuk pembangkitan daya listrik menggunakan reaktor nuklir, maupun pemanfaatan nuklir untuk keperluan industri dan rumah sakit.

[sunting]

NORM (naturally occurring radioactive material)

 

Ada material-material yang secara alami bersifat radioaktif. Mengolah material-material ini dapat menghasilkan limbah radioaktif dan biasanya dikategorikan dalam NORM. Kebanyakan limbah ini adalah material pemancar partikel alpha yang berasal dari rantai peluruhan uranium dan thorium.

 

Efek dan Akibat dari Pencemaran Benda Radioaktif / Radio Aktif - Sinar Alpha, Beta dan Gamma Pembelahan Inti Atom - Ilmu Kimia

Sun, 08/10/2006 - 12:05am — godam64

 

Pengertian atau arti definisi pencemaran radioaktif / radio aktif adalah suatu pencemaran lingkungan yang disebabkan oleh debu radioaktif akibat terjadinya ledakan reaktor-reaktor atom serta bom atom. Yang paling berbahaya dari pencemaran radio aktif seperti nuklir adalah radiasi sinar alpha, beta dan gamma yang sangat membahayakan makhluk hidup di sekitarnya. Selain itu partikel-partikel neutron yang dihasilkan juga berbahaya. Zat radioaktif pencemar lingkungan yang biasa ditemukan adalah 90SR penyebab kanker tulang dan 131J.

 

Apabila ada makhluk hidup yang terkena radiasi atom nuklir yang berbahaya biasanya akan terjadi mutasi gen karena terjadi perubahan struktur zat serta pola reaksi kimia yang merusak sel-sel tubuh makhluk hidup baik tumbuh-tumbuhan maupun hewan atau binatang.

 

Efek serta Akibat yang ditimbulkan oleh radiasi zat radioaktif pada umat manusia seperti berikut di bawah ini :

 

1. Pusing-pusing

2. Nafsu makan berkurang atau hilang

3. Terjadi diare

4. Badan panas atau demam

5. Berat badan turun

6. Kanker darah atau leukimia

7. Meningkatnya denyut jantung atau nadi

8. Daya tahan tubuh berkurang sehingga mudah terserang penyakit akibat sel darah putih yang jumlahnya berkurang

 

 

 

penomena Sinar Radioaktif Dalam Medan Magnit

 

Unsur radiaoaktif alam dan buatan menunjukkan aktivitas radiasi yang sama yaitu radiasi sinar-α, sinar-ß, dan sinar-γ. Inti induk setelah melakukan satu kali pancaran akan menghasilkan inti anak. Prinsip radiasinya mengikuti hukum kekekalan nomor massa. Sifat alamiah sinar radioaktif dipelajari dengan menggunakan medan magnit. Ketika sinar radiaoaktif dilewatkan dalam medan magnit diperoleh fenomena-fenomena berikut

 

 

Saat medan magnit nol (B = 0 T) tidak terjadi perubahan apapun pada sinar-sinar yang dipancarkan..

 

Saat diberikan medan magnit lemah, sejumlah berkas sinar dalam jumlah sedikit dibelokkan ke arah kutub selatan magnit, dan sebagian besar bergerak lurus.

 

Saat diberikan medan magnit yang cukup kuat, berkas sinar dalam jumlah yang cukup besar dibelokkan cukup kuat ke arah kutub selatan, sejumlah berkas sinar dibelokkan ke arah kutub utara, dan sebagian lagi diteruskan

 

Saat diberikan medan magnit kuat, berkas sinar dalam jumlah yang cukup besar dibelokkan dengan kuat ke arah kutub selatan (S), sejumlah berkas lainnya dibelokkan ke arah kutub utara (U), dan beberapa berkas diteruskan.

 

Karakteristik Sinar Radioaktif

Sinar alfa ( α )

Sinar alfa merupakan radiasi partikel yang bermuatan positif. Partikel sinar alfa sama dengan inti helium -4, bermuatan +2e dan bermassa 4 sma. Partikel alfa adalah partikel terberat yang dihasilkan oleh zat radioaktif. Sinar alfa dipancarkan dari inti dengan kecepatan sekitar 1/10 kecepatan cahaya. Karena memiliki massa yang besar, daya tembus sinar alfa paling lemah diantara diantara sinar-sinar radioaktif. Diudara hanya dapat menembus beberapa cm saja dan tidak dapat menembus kulit. Sinar alfa dapat dihentikan oleh selembar kertas biasa. Sinar alfa segera kehilangan energinya ketika bertabrakan dengan molekul media yang dilaluinya. Tabrakan itu mengakibatkan media yang dilaluinya mengalami ionisasi. Akhirnya partikel alfa akan menangkap 2 elektron dan berubah menjadi atom helium .

 

Sinar beta ( ß )

Sinar beta merupakan radiasi partikel bermuatan negatif. Sinar beta merupakan berkas elektron yang berasal dari inti atom. Partikel beta yang bemuatan-l e dan bermassa 1/836 sma. Karena sangat kecil, partikel beta dianggap tidak bermassa sehingga dinyatakan dengan notasi . Energi sinar beta sangat bervariasi, mempunyai daya tembus lebih besar dari sinar alfa tetapi daya pengionnya lebih lemah. Sinar beta paling energetik dapat menempuh sampai 300 cm dalam uadara kering dan dapat menembus kulit.

 

Sinar gamma (γ )

Sinar gamma adalah radiasi elektromagnetek berenergi tinggi, tidak bermuatan dan tidak bermassa. Sinar gamma dinyatakan dengan notasi . Sinar gamma mempunyai daya tembus. Selain sinar alfa, beta, gamma, zat radioaktif buatan juga ada yang memancarkan sinar X dan sinar Positron. Sinar X adalah radiasi sinar elektromagnetik

 

Karakteristik Sinar – Sinar Radioaktif

 

Sinar-sinar radioaktif memiliki karakteristik yang unik dan berbeda satu sama lainnya, walaupun berasal dari sumber yang sama. Tabel berikut merupakan kumpulan karakteristik sinar-sinar radioaktif yang dikumpulkan dari pembahasan sebelumnya.

 

 

 

 

 

 

Daya Tembus dan Daya Ionisasi

 

Salah satu sifat menguntungkan dari sinar radioaktif adalah daya tembusnya yang tinggi. Kekuatan tembus sinar-sinar radioaktif ini dipengaruhi oleh daya ionisasinya. Daya ionisasi adalah kemampuan sinar radioaktif menarik elektron dari atom-atom yang dilewatinya. Partikel-a mempunyai daya ionisasi yang kuat karena muatannya positif. Ia lebih mudah menarik elektron bebas dari atom-atom. Partikel-ß memiliki daya ionisasi yang kurang kuat dan partikel-? memiliki daya ionisai paling lemah. Untuk mengionisasi atom sinar radioaktif akan menggunakan energi yang dimilikinya, sehingga semakin kuat daya ionisasinya semakin banyak energinya yang hilang. Hal ini tentu saja berpengaruh pada daya tembusnya. Sinar-? memiliki daya tembus paling kuat , kemudian sinar-ß dan yang paling lemah adalah sinar-a. Di udara terbuka sinar-a akan kehilangan banyak energi karena mengionisasi molekul-molekul udara sehingga hanya memiliki jangkauan beberapa centimeter saja. Ilustrasi berikut memperlihatkan perbandingan daya tembus sinar-sinar radioaktif.

 

 

 

Waktu Paruh 

 

Pendekatan lain yang dapat dilakukan dalam menentukan aktivitas radiasi adalah dengan konsep waktu paruh. Waktu paruh () didefinisikan sebagai lamanya zat radioaktif melakukan peluruhan hingga banyaknya inti sisa adalah setengah dari banyaknya inti mula-mula .  subsitusikan nilai ini ke persamaan hukum peluruhan zat radioaktif, diperoleh

 

 

 

 

 

Faktor T ½ dinamakan waktu paruh. Waktu paruh dari beberapa zat radioaktif telah diketahui melalui berbagai percobaan dan pemodelan.

 

Contoh Waktu paruh dari Au-198 adalah 3 hari, tentukan tetapan peluruhnya?

 

Aturan Peluruhan

 

Sebagai contoh inti induk uranium ( mengalami peluruhan berantai hingga mencapai inti stabil  . Selisih nomor massa inti induk A = 238 dan nomor massa inti stabil A’ = 206 adalah 32, dan selisih nomor atomnya 10. Ini menunjukkan pola radiasi sinar radioaktif yang dihasilkan adalah 4n + 2, dengan adalah bilangan bulat. Dengan demikian akan diperoleh empat deret peluruhan yang paling mungkin mengikuti aturan 4n, 4n+1, 4n+2, 4n+3. Dari Pola radiasi ini diketahui 4 buah deret radioaktif yang terkenal, yaitu

 

 

Adanya deret radioaktif di alam memungkinkan lingkungan hidup kita secara konstan dilengkapi unsur-unsur radioaktif yang seharusnya sudah musnah, seperti yang memiliki waktu paruh 1600 tahun. Jika dibandinghkan dengan umur bumi 5,0 x 109 tahun seharusnya sudah musnah. Tetapi karena adanya deret Uranium  dengan waktu paruh 4,47 x 109 tahun yang hampir sama dengan umur bumi, dalam beberapa langkah peluruhan menghasilkan unsur maka sampai saat ini masih ditemui di alam.

 

Detektor Radiasi

 

Sistem tubuh kita tidak dapat mendeteksi kehadiran sinar-sinar radioaktif, sehingga kita memerlukan alat untuk mengenalinya. Alat untuk mengetahui keberadaan sinar radioaktif dinamakan detektor radiasi. Hampir semua detektor radiasi berfungsi pada keadaan energi tinggi dan bekerja berdasarkan prinsip bahwa radiasi akan memberikan energi pada elektron-elektron dalam bahan sehingga elektron akan meninggalkan atom dan selanjutnya atom menjadi ion-ion positif. Peristiwa ini dinamakan ionisasi. Ada beberapa detektor radiasi yang cukup dikenal seperti diperlihatkan pada tabel berikut

 

 

 

Simbol Radiasi Sinar Radioaktif

 

Anda telah mengetahui bahwa radiasi sinar radioaktif sangat merugikan kesehatan dan lingkungan. Untuk itu kita perlu mengenal tanda-tanda awal keberadaan zat radioaktif. Tanda-tanda keberadaa zat radioaktif dapat dikenali melalui simbol-simbol. Simbol yang digunakan untuk menandari bahan radioaktif dinamakan trefoil (berasal dari bahasa laitin: trifolium, "three-leaved plant).

 

 

Jika menemukan lambang-lambang ini pada kemasan menunjukkan bahwa kemasan tersebut mengandung bahan radioaktif. Namun dalam rangka mempublikasikan keperdulian kita terhadap bahaya zat- radioaktif disekitar kita simbol trefoil ini dicetak pada berbagai barang yang biasa digunakan sehari-hari sepert gambar berikut.

 

Tujuannya adalah mengingatkan kita tentang bahaya zat-zat radioaktif yang bisa muncul disekitar kita

 

Tidak Semua Radiasi Berbahaya

 

 

Di alam ini memang terdapat apa yang disebut dengan unsur radioaktif, yakni sifat dari suatu zat yang dapat memancarkan sinar radiasi karena kondisi zat tersebut tidak stabil. Secara alami dalam tulang kita terdapat (sedikitinya dua) unsur radioaktif, yakni polonium dan radium. Otot-otot kita mengandung unsur karbon (C) dan kalium (K) radioaktif. Sementara itu, dalam paru-paru kita juga terdapat gas mulia radioaktif dan tritium. Zat-zat ini dan banyak zat lainnya secara terus-menerus memancarkan radiasi dan menyinari tubuh kita dari dalam. Kita juga terkena radiasi dari dalam melalui semua zat radioaktif alam dan buatan yang berasal dari makanan atau minuman yang kita konsumsi sehari-hari.

 

Dalam bidang kesehatan, radiasi justru menjadi penyelamat. Kadang-kadang kita menjalani pemeriksaan dengan sinar-X dan mammografi. Dokter gigi kemungkinan memutuskan untuk menyinari gigi kita dengan sinar-X. Pengobatan dan pemeriksaan medik juga memerlukan zat-zat radioaktif yang disuntikkan ke dalam tubuh kita. Penyakit kanker kadang-kadang diobati dengan sinar-X atau unit telekobal (disebut juga bom kobal).

 

Contoh-contoh ini secara jelas menunjukkan bahwa tidak semua radiasi berbahaya. Sebaliknya, memang benar bahwa radiasi dapat membunuh, dengan cepat atau secara perlahan. Oleh karena itu, baik untuk diketahui, kapan seseorang seharusnya takut terhadap radiasi dan kapan seharusnya tidak takut.

 

Rokok mengandung zat radioaktif

 

Rokok mengandung nikotin, semua orang tahu. Tetapi rokok mengandung bahan radioaktif, belum tentu semua orang tahu.Mengenai keradioaktifan rokok, ada dua unsur yang menjadi “biang keladi”nya, yaitu polonium (210Po) & timbel (210Pb), yang semuanya termasuk dalam kelompok radionuklida dengan toksisitas (tingkat keberacunan) sangat tinggi. Po-210 adalah pemancar radiasi-a, sedangkan Pb-210 adalah pemancar radiasi-ß. Kedua jenis radiasi tersebut, terutama radiasi-a, berpotensi untuk menimbulkan kerusakan sel tubuh apabila terhisap atau tertelan. Kejadian kanker paru pada perokok pun belakangan ditengarai lebih disebabkan oleh radiasi-a & bukan karena tar dalam tembakau.

 

Lalu, bagaimana 210Po & 210Pb bisa sampai di rokok? Perhatikan gambar berikut. Tanah, sebagai tempat tumbuh tanaman tembakau yang merupakan bahan utama rokok, mengandung radium (226Ra). Radium ini adalah induk yang nantinya dapat meluruh, & dua di antara sekian banyak unsur luruhannya adalah 210Po & 210Pb. Melalui akar, 210Po & 210Pb pun terserap oleh tanaman tembakau. Penggunaan pupuk fosfat yang mengandung kedua unsur tersebut, tentu saja, menambah konsentrasi 210Po & 210Pb dalam tembakau. Mekanisme lain, & ini adalah yang utama, adalah lewat daun. Po-210 & Pb-210 terendapkan pada permukaan daun tembakau sebagai hasil luruh dari gas radon (222Rn) yang berasal dari kerak bumi & lolos ke atmosfer. Daun tembakau memiliki kemampuan tinggi untuk menahan & kemudian mengakumulasi 210Po & 210Pb karena adanya bulu-bulu tipis ~yang disebut trichomes~ di ujung-ujungnya.

 

 

 

Bahaya radio aktif

Radioaktivitas pertama kali ditemukan pada tahun 1896 oleh ilmuwan Perancis Henri Becquerel ketika sedang bekerja dengan material fosforen. Material semacam ini akan berpendar di tempat gelap setelah sebelumnya mendapat paparan cahaya, dan dia berfikir pendaran yang dihasilkan tabung katoda oleh sinar-X mungkin berhubungan dengan fosforesensi. Karenanya ia membungkus sebuah pelat foto dengan kertas hitam dan menempatkan beragam material fosforen diatasnya. Kesemuanya tidak menunjukkan hasil sampai ketika ia menggunakan garam uranium. Terjadi bintik hitam pekat pada pelat foto ketika ia menggunakan garam uranium tesebut.

 

 

 

Tetapi kemudian menjadi jelas bahwa bintik hitam pada pelat bukan terjadi karena peristiwa fosforesensi, pada saat percobaan, material dijaga pada tempat yang gelap. Juga, garam uranium nonfosforen dan bahkan uranium metal dapat juga menimbulkan efek bintik hitam pada pelat.

 

 

 

Partikel Alfa tidak mampu menembus selembar kertas, partikel beta tidak mampu menembus pelat alumunium. Untuk menghentikan gamma diperlukan lapisan metal tebal, namun karena penyerapannya fungsi eksponensial akan ada sedikit bagian yang mungkin menembus pelat metal. Pada awalnya tampak bentuk radiasi yang baru ditemukan ini mirip dengan penemuan sinar-X. Akan tetapi, penelitian selanjutnya yang dilakukan oleh Becquerel, Marie Curie, Pierre Curie, Ernest Rutherford dan ilmuwan lainnya menemukan bahwa radiaktivitas jauh lebih rumit ketimbang sinar-X. Beragam jenis peluruhan bisa terjadi.

 

 

 

 

 

Sebagai contoh, ditemukan bahwa medan listrik atau medan magnet dapat memecah emisi radiasi menjadi tiga sinar. Demi memudahkan penamaan, sinar-sinar tersebut diberi nama sesuai dengan alfabet yunani yakni alpha, beta, dan gamma, nama-nama tersebut masih bertahan hingga kini. Kemudian dari arah gaya elektromagnet, diketahui bahwa sinar alfa mengandung muatan positif, sinar beta bermuatan negatif, dan sinar gamma bermuatan netral. Dari

 

 

 

besarnya arah pantulan, juga diketahui bahwa partikel alfa jauh lebih berat ketimbang partikel beta. Dengan melewatkan sinar alfa melalui membran gelas tipis dan menjebaknya dalam sebuah tabung lampu neon membuat para peneliti dapat mempelajari spektrum emisi dari gas yang dihasilkan, dan membuktikan bahwa partikel alfa kenyataannya adalah sebuah inti atom helium. Percobaan lainnya menunjukkan kemiripan antara radiasi beta dengan sinar katoda serta kemiripan radiasi gamma dengan sinar-X.

 

 

 

Para peneliti ini juga menemukan bahwa banyak unsur kimia lainnya yang mempunyai isotop radioaktif. Radioaktivitas juga memandu Marie Curie untuk mengisolasi radium dari barium; dua buah unsur yang memiliki kemiripan sehingga sulit untuk dibedakan.

 

 

 

Dewasa ini di beberapa negara maju pemanfaatan tenaga nuklir di berbagai bidang kehidupan masyarakat, seperti di bidang penelitian, pertanian, kesehatan, industri, dan energi sudah begitu pesat, maka sudah sewajarnya potensi tenaga nuklir yang cukup besar tersebut dikembangkan dan dimanfaatkan bagi sebesar-besar kemakmuran rakyat. Namun, di samping manfaatnya yang begitu besar tenaga nuklir juga mempunyai potensi bahaya radiasi terhadap pekerja, anggota masyarakat, dan lingkungan hidup apabila dalam pemanfaatan tenaga nuklir, ketentuan-ketentuan tentang keselamatan nuklir tidak diperhatikan dan tidak diawasi dengan sebaik-baiknya.

 

Pembinaan dan pengembangan kemampuan sumber daya manusia adalah syarat mutlak dalam rangka mendukung upaya pemanfaatan tenaga nuklir dan pengawasannya sehingga pemanfaatan tenaga nuklir benar-benar meningkatkan kesejahteraan rakyat dengan tingkat keselamatan yang tinggi. Pembinaan dan pengembangan ini dilakukan juga untuk meningkatkan disiplin dalam mengoperasikan instalasi nuklir dan menumbuhkembangkan budaya keselamatan. Zat radio aktif adalah setiap zat yang memancarkan radiasi pengion dengan aktivitas jenis lebih besar daripada 70 kBq/kg atau 2 nCi/g (tujuh puluh kilobecquerel per kilogram atau dua nanocurie per gram). Angka 70 kBq/kg (2 nCi/g) tersebut merupakan patokan dasar untuk suatu zat dapat disebut zat radioaktif pada umum-nya yang ditetapkan berdasarkan ketentuan dari Badan Tenaga Atom Internasional (International Atomic Energy Agency). Namun, masih terdapat beberapa zat yang walaupun mempunyai aktivitas jenis lebih rendah daripada batas itu dapat dianggap sebagai zat radioaktif karena tidak mungkin ditentukan batas yang sama bagi semua zat mengingat sifat masing-masing zat tersebut berbeda.

 

Pengertian atau arti definisi pencemaran zat radioaktif adalah suatu pencemaran lingkungan yang disebabkan oleh debu radioaktif akibat terjadinya ledakan reaktor-reaktor atom serta bom atom. Limbah radioaktif adalah zat radioaktif dan bahan serta peralatan yang telah terkena zat radioaktif atau menjadi radioaktif karena pengoperasian instalasi nuklir yang tidak dapat digunakan lagi.  yang paling berbahaya dari pencemaran radioaktif seperti nuklir adalah radiasi sinar alpha, beta dan gamma yang sangat membahayakan makhluk hidup di sekitarnya. Selain itu partikel-partikel neutron yang dihasilkan juga berbahaya. Zat radioaktif pencemar lingkungan yang biasa ditemukan adalah 90SR penyebab kanker tulang dan 131J.

 

Apabila ada makhluk hidup yang terkena radiasi atom nuklir yang berbahaya biasanya akan terjadi mutasi gen karena terjadi perubahan struktur zat serta pola reaksi kimia yang merusak sel-sel tubuh makhluk hidup baik tumbuh-tumbuhan maupun hewan atau binatang.

 

Efek serta Akibat yang ditimbulkan oleh radiasi zat radioaktif pada umat manusia seperti berikut di bawah ini : Pusing-pusing, Nafsu makan berkurang atau hilang, Terjadi diare, Badan panas atau demam, Berat badan turun, Kanker darah atau leukimia, Meningkatnya denyut jantung atau nadi.

 

 

 

 

Pusat Teknologi Limbah Radioaktif (PTLR - BATAN)

            PTLR berfungsi untuk mengolah limbah radioaktif yang berasal dari berbagai Pusat Penelitian Tenaga Nuklir, BATAN, dan yang berasal dari penggunaan radiasi dan radioisotop di berbagai instansi di luar BATAN. Sarana dan fasilitas pengolahan limbah radioaktif ini

            dapat pula digunakan dan pengembangan teknologi pengolahan            

 

            limbah radioaktif, serta untuk pelatihan bagi penyediaan tenaga ahli dalam pengelolaan limbah PLTN mendukung keselamatan pemanfaatan teknologi nuklir. PTLR bertugas pula melakukan pemantauan radioaktivitas lingkungan di sekitar kawasan Puspiptek, Serpong dan pengawasan keselamatan radiasi pekerja radiasi di berbagai Pusat Penelitian Tenaga Nuklir di Serpong.

 

 

 

Kunjungi web site PTLR untuk mendapatkan informasi lebih lengkap

 

Profil Laboratorium dalam Kawasan Puspiptek, dapat dilihat pada link dibawah ini